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Abstract

Artificial intelligence problems are solved on
electronic computers by techniques that make heavy use of
address calculation and dynamic management of data storage
space. Optical computing, on the other hand, is normally
associated with numerical problems in which the size of the
data space is fixed and addressing may be handled in a
predictable manner not affected by actual data values. A
criterion is presented for determining the amount of
dynamic storage management required for an expert system
problem and several methods are discussed for eliminating
unnecessary address manipulation by careful choice of data
representation. Major emphasis is placed on the
implementation of the mathematical technique of resolution.
Various resolution strategies are analyzed and the impact
of these strategies on storage management is assessed with
a view to wminimizing the <complexity of processing.
Finally, novel uses of electro-optical/electronic hybrids
are considered for problems in which the state space grows
drastically or where reversible <control strategies are

required to implement search methods.

Subject terms: digital optical computing; optical logic;
artificial intelligence; expert systems; mathematical

resolution,
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K 1. Introduction
» The speed and parallelism inherent in optical
;; computing has made it an attractive technology for a
E variety of computationally 1{intensive problems. Optical
. computing has been successfully applied to signal
: procelaingl, equation :olvingz. and digital loglc3. among
f other fields. However, in artificial intelligence, one of
" the most computationally intense fields, only very limited
[4
5 progress has been made. A breakthrough in this area would
‘ have tremendous benefits, particularly to such programs as
; the DARPA Strategic Computing Initiative.
; Progress {s slow in A.l, because it is qualitatively
‘
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4
different from the disciplines in which optical computing
is succeeding. It is the intent of this paper to discuss
these differences, Some of them are fundamental and must
be accomodated by any optical Al architecture., Others are
historical, and are the product of methods designed for
implementation on sequential electronic processors. These
can be sidestepped by proper choice of representation and
processing strategy. This paper will present some

examples,

2., History and properties of symbolic computing

Unquestionably, the most profound early influence on
artificial intelligence (at 1least on the subset called
symbolic computing) was the development of the LISP
programming language by John McCarthy at MIT in the late
l950’-h,5. For almost 30 years, LISP has been the "lingua
franca” of symbolic computing and artificial intelligence.
The approaches to most Al problems are 80 commonly
expressed in LISP that it is difficult to imagine any other
way to deal with them. This mindset must be surmounted 1f
new technologies such as parallel processing and optical
computing are to be applied to Al problems.

LISP 1s & language intended originally for serial
interpretive execution. As such, it has several major
characteristics which mesh well with this environment.

First, the representation of programs {s the same as the
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representation of data. LISP 4is the only high 1level .
language in which a program can legitimately generate new

instructions and execute them "on the fly". While this v
feature 1is little wused, the technique of “procedural ~
embedment"”, or mixing program fragments iIin a Dbasically !
data-driven problem solution, is used in many AI codes. A

Newer generations of LISP are de-emphasizing this

technique. This 18 fortunate, since optoelectronic

v s

implementation of this feature would be very difficult,

A second property of LISP 1s a very high level of data
abstraction. Storage management 1In a LISP program 1is

handled entirely by the interpreter or runtime system. The

N Yy a_w

programmer makes no commitment to the size or structure of
the data objects that he manipulates and the locations and

storage relationships of the data entities are unknown to

him. This is a very positive feature to the programmer,

who no 1longer has to dimension arrays, worry about runtime
stacks or manage data in a highly recursive, dynamic
execution environment. The price that is paid is that a
substantial fraction of the memory space contains K
addresses, not data, and that unknown to the programmer, R

most of the computation revolves around address

-

manipulation rather than data examination. Indeed, the

v %

fundamental building block in LISP 1s the “"cons cell"”,

which contains no data and two addresses. Data-containing
cells are a special case. This dependency on addresses has

even less desirable ramifications for optical computing, as ;

Y R A N N A N N T A A A N I Iy C R i I TR I AU LR ORI T




we shall see later.

The third significant property of LISP is its tendency
toward recursive rather than iterative solutions to
problems. This 18 again attractive from a programming
point of view, since most AI problems can be decomposed
into subproblems structurally identical to the original
with less complex data. Recursion is the natural way to
solve these problems. Unfortunately, the implementation of
recursion requires the saving and restoring of a great deal
of control state in a processor. Sequential electronic
processors have no problem with this, but as we shall see,
parallel and optical processors are not well suited to the
management of large amounts of control state.

In summary then, our problem in using optical
computing for Al is not merely to transfer algorithms from
one technology to another, but rather to redevelop concepts
into algorithms in a different technological framework 1in
which o0ld techniques may in fact be counterproductive, It

should not be surprising that this is a difficult task.

3. Properties of optical computing

One way of conceptualizing algorithms is to view thenm
as gonsisting of data manipulation and control. Data
manipulation is the process of combining or rearranging

data values to obtain newer and more useful data values.

Boolean logic, &arithmetic, and rearrangement are all
' -J' M "J'"l ¥ (-'-r-.‘l‘"f"fv.'.r".r" ".f"'.‘rr:’ ."r.'.'.:‘.-:'r"-r.'.-‘J-".-".-".':'.'.'.P:'.:':‘.*".-"f"a".-".-:'.( -

.-
a2 e T e



7

examples of data manipulation. Control 1includes the
selection of alternative manipulation and the repetition of
manipulation based on data-dependent conditions. It also
includes the management of the processor state required for
the decomposition of problems into subprograms.

It is in the area of data manipulation that most
optical computing work has been done. If we may call data
manipulation "calculation”, then the field cf optical
computing at present is heavily dominated by optical
calculation. Control in optical systems requires
optoelectronic or optoacoustic interfaces and the use of
spatial light modulators to effect selection. Since the
effeétive use of repetition requires optical gain and state
variables, the use of repetition is limited in most systems
and is° replaced by non data dependent replication
(cascading) of hardware components.

A glaring difference between electronic and optical
computers is that in an electronic system, all components
of an algorithm are stored in a uniform way (bit patterns
in memory) and are somewhat interconvertible. By contrast,
in an optical system, the "program"” is hardware, addresses
are geometrical or time coordinates, while data values are
optically expressed. Thus taking data dependent action
requires light patterns to modify 1light flow through
hardware, while address calculation requires light patterns
to affect system geometry - either <coordinates or path

lengths. The tools available to do this (spatial 1light

R A A R e B Lt P e O N T T T T L T T T T
- - i R 5 g . - L, ! o . L3 » ’, ', ’
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modulators) are extremely slow compared to data

manipulation and propagation rates. This further 1inhibits
the transfer of algorithms from sequential electronic
processors, where control 1s fast and data manipulation 1is
slow.

Our task while solving AI problems must therefore be

to eliminate extraneous control interactions and cast the
problems as completely as possible as calculation problems,
The necesary residue of control must be accomodated by an
optical system, but must be handled in a way that minimizes

its impact on performance.

4. Data in symbolic optical computing

Symbolic computing is often described as

"object-oriented”. What is meant by this 1is that the

presence or absence of a particular data object {in a

L

L)

certain context 18 the most relevant fact. The value of

Y
LY

AT RS T -T.TeT e s MRS YYERY B . B XX TN "

-
.

the data object is much less important - indeed, the object
may not even have 8 value, In conventional symbolic
computing, the objects present In a certain context are
grouped together in a 1list, which may be sequentially
searched to determine presence or absence of specific
objects. A 1list 18 an {inconvenient representation for
optical computing because of the nonequivalence of data and
addresses. A more natural representation is an array of

booleans, with each possible object assigned a fixed

LI P
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9
position. In many Al problems, the universe of possible
data objects is constrained to on the order of 1000 or
less, so this 1s a feasible approach. The correspondence
between a linked 1list and a boolean array 1is shown 1in
Figure 1, This representation presumes that the order of
elements in the 1ist is not significant.

This simple representation does not allow for objects
with a value. An important special'case of valued objects
occurs in the mathematical technique of proof by
resolution. This powerful technique for validating or
invalidating hypotheses requires boolean valued objects.
These objects are arranged in clauses, which are disjuncts
of selected boolean objects. Thus to represent clauses as
boolean arrays requires more than one bit per data object
(a data object is called a "literal"” in resolution). Using
two bits per literal allows the representation of the four
states shown 1in Figure 2, The need for three of these
states 1Is obvious; the fourth state is a byproduct of the
resolution process, and is discussed in detail later. The
particular notation used in Figure 2 1is <called “"double
rail” or “differential” 1logic and simplifies some logical
operations in resolution. Representations of three simple
clauses are shown in Figure 3 using this notation. 1In this
discussion, we assume that the discrete data values are
represented by incoherent intensity values, although there
are numerous ofhet possibilities. In an actual

implementation, the choice would depend on the current

.
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10
state of the art in optical device technology.

One additional representational choice remains to Dbe
made. Since our system has both a space and a time domain,
we may express our boolean vector In either of these
dimensions. If we choose the space domain, all literals in
a clause will occur in the same image. As we shall see
later, this eliminates the need for control state variables
during resolution, but 1limits us to onme spatial dimension
for the resolution itself. If a clause is expressed in the
time domain, all literals in the clause occur at the same
spatial location, but at different times (in different
images). This allows two spatial dimensions for the
resolution process, but requires two boolean control
varlables per resolved clause to remember the outcome of
the process. If growth of the data space is accomodated in
the time domain, mapping clauses into the time domain would
appear less complex than the spatial alternative, but the
decision will ultimately revolve around the availability of
suitable optical memory for the control state.

One characteristic of Al problems which must be
accomodated by optical computing representations is that
the data space is dynamic. Unlike numerical problems which
have a fixed number of variables whose values change, Al
problems generate additional —contexts and groupings of
objects as the problem {s being solved. There are

basically two dimensions in which growth can occur: time

and space, Growth iIn time 1implies that when images
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interact during data manipulation, new images are created
which supplement, not replace, the originals. These new
images must be time sequenced in an optical pipeline with
pre—existing images to define the new state of the
computation. This requires that the pipeline get longer as
computation proceeds. Alternatively, the new images can be
spatially adjoined to the old ones, and the amount of area
devoted to the iﬁage may 1increase. Unfortunately, the
amount of potential growth 1in the data space Is so large
that this approach may often lead to exceeding hardware
limitations.

Al problems (such as game playing) in which each
decision requires both generation of a new state space and
retention of the o0ld are particularly susceptible to data
space explosion. These problgms use a reversible control
strategy which must allow backup to earlier states of the
solution while exploring for an answer. Resolution is a
more attractive first problem for optical 1implementation
because it uses 1irreversible control strategies. These do
not have as pronounced a data growth.

AI problems can be categorized on a control/data space
map as shown in Figure 4. Conventional numerical problems
are shown in this figure for comparison. The data
complexity axis can be classified 1into four regions

according to the type of data manipulation:

Substitution: the state space is fixed, and

$8 92 WA 0r° ta' g2 Ga it
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computation substitutes new values for old.

Replacement: computation generates a new state space

which replaces the old.

Augmentation: compu:ation generates new elements to

add to the existing state space.

Replication: <computation creates a8 new state space

but all old state spaces must be retained.

Problems toward the left side of the map are most

amenable to optical 1implementation. This includes some,

but not all, forms of resolution.

S. The process of resolution and its optical implementation

Resolution is a mechanical process for detecting
contradiction within a family of assertions. It may be
used for proof of an assertion by showing that the negation
of the assertion contradicts the other assertions. A
detailed discussion of resolution 1s beyond the scope of
this paper, but several excellent references exist6,7. The

process may be summarized as follows:

(1) The original set of axioms (rules) are converted

into clause form. In clause form, logical implication
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is removed from the rules using the equivalence of the
forms (P --> Q) and (P*' + Q). The rules are placed in
a canonical disjunctive form. Figure 5 illustrates
some simple rules transformed into clauses. This
process need only be performed once for a given

problem domain. All clauses are assumed to be true.

(2) The assertion ¢to be proven Iis negated and

converted to clause form.

(3) Pairs of clauses are selected and their resolvent
formed. A pair of «clauses can be resolved when
exactly one literal ;ccurs in both <clauses, asserted
in one and denied 1In the other. This 1s an
application of the logical tautology: (A+B)(A'+C) =-=>

(B+C). The resolvent 1is the wunion of the source

clauses with the single contradicting literal removed.

(4) Step 3 18 repeated wusing both the original
assertions and new resolvents wuntil (a) no new
resolvents can be formed; or (b) a resolvent 1is
formed with no literals at all. It is also possible
that the computation is nonterminating. Case (b) {s
the desired <case, and shows that the original

assertion was true.

The key to resolution lies in how the pairs of clauses
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are selected {n step 3. A number of different methods
exist. Central to all of them s that most pairs of
clauses cannot be resolved because they are not {n the
reéuired form. Thus an intermediate step is to determine
whether or not a particular pair of <clauses can be
resolved. Clearly, the answer for any pair of clauses is
independent of the answer for amy other pair. Thus all
possible pairs of clauses can be checked in parallel. This
process is {llustrated in Figure 6 for time serial clauses
and in Figure 7 for spatially parallel clauses. This has
been discussed in more detail elsewhere 3 . 1In both cases,
a light pattern 18 produced for each literal which may be
decoded into the four double rail values discussed earlier.
This is shown in Figure 8.

A pair of clauses may be resolved {f exactly one
literal in the vector is in the contradiction state. The
resolvent has in fact already been formed by the checking
process, except that the contradicted 1literal must be
output in the "not present” state in order to participate
in further resolution, This may be accomplished using a
spatial light modulator to remove the 1literal from the
output,

A major problem in resolution {s that only a small
fraction of potential resolvents meet the single
contradiction requirement. Thus after a vector or matrix

of potential resolvents is formed optically, only a few of

the results are useful. Many passes through the resolvent
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forming mechanism are required in order to solve a problem,
and if the useless clauses are not discarded, the growth of
the data space will be exponential with a very large base.
We have discussed how to determine that a particular clause
{s useless - our problem now s how to eliminate the
use.ess clauses. Functionally, we need to arrange the
result matrix to squeeze out the wuseless <clauses, then
adjoin the remaining elements with the original clause
matrix to form the next data set for {nput to the
resolution mechanism. With present technology, this will
require another spatial 1light modulator or electro-optic
conversion.

The approach to resolvent compaction will vary
depending on whether time-serial or spatially parallel
notation 1is used. In time serial notation, the
one-contradiction condition is detected by the use of a
pair of control varfables C (contradiction) and X (excess

contradictions) calculated by an i{nductive formula. If

C<0> = 0 (1)
X<0> = 0

and

C<n> = (T<m>)*(F<n>) + (C<n=1>) (2)
X<n> = (T<a>)*(F<n>)*(C<n=1>) + (X<n-1>)

then a resolvent {s acceptable 1ff C<final> = 1 and

X<final> = 0. T and F are the true and false components of

the double-rail notation for each literal, and the

Q
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operations * and + are boolean conjunction and disjunction,
respectively. Since X may become true as late as the
passage of the last literal through the resolvent
mechanism, the activation of the SLM may not begin until
that time. Thus the SLM must be located some distance from
the optical logic which forms the resolvent. In order to
"squeeze out” wunacceptable resolvents from the result, one
SLM per result must be provided. This SLM will either
perform no operation on the output 1images (1if the
assoclated resolvent 1s acceptable), or will move all
remaining resolvents up one position (1if the associated
resolvent is unacceptable). This could be a rather 1large
number of SLM's. A one dimensional example 18 shown {n
Figure 9. In this figure, each SLM squeezes out the
corresponding clause 1f it is invalid. The bottom clause
need never be squeezed out.

I1f spatially parallel notation is used, the acceptance
criterion can be computed in parallel using a tree
structure to capture the necessary contradiction condition.
Denoting the 1level in the tree by the first index, we have
C<l, 1> = (T<L>)*(F<1>) (3)
X<l,1> = 0
Then for each succeeding level we have
C<n,1> = (C<n=-1,21>) + (C<n-1,21+1>) (4)

X<n,1> = (C<n=1,21>)*(C<n=-1,21+1>) + (X<n=-1,21>)

+ (X<n~1,21+1>)
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The condition for success {s that C<final,0> = ] and
X<final,0> = 0., This {8 the same condition as derived for
the time-serial case, but no storage is required. As in
any binary tree, the number of levels 1is log2 of the number
of possible 1literals, perhaps 8-10 for reasonable cases.
With spatially parallel notation, one dimension of the
image is devoted to the literals themselves. The potential
resolvents between a <clause and an array of clauses are
distributed across the other dimension. Thus while the
same sort of compaction with SLM's 1is required as in the
time-serial case, the compaction 18 uniforn in one
dimension. This will allow simpler SLM architecture,. In
particular, 2k resolvents can be compacted using k SLM's
a8 shown in Figure 10. The SLM's are arranged {n order
such that the first SLM can move a clause one position,
while the kﬁﬁ SLM can move a clause by Zk-l positions.
Each succeeding SLM requires only half the independent
elements as {ts predecessor. Control for the SLM can be
electronically derived from the sequence of (C,X) bits for

the various resolvents.

6. Comparison of resolution strategies

The remaining major issue fin resclution s how the
pairs of «clauses to be resolved are selected. The most
straightforward strategy is breadth-first resolution. In

this strategy, the initial clauses are considerec¢ the “"base
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generation”, Generation 1 1s formed by attempting to
resolve each member of the base generation with all other
members of the base generation. Generation 2 is formed by
resolving each member of generation ! with all the members
of generation 1 and the base generation. This process 1is
repeated for each succeeding generation.

Breadth-first resolution is complete, in the sense
that it will find a contradiction if one exists, but 1is
very expensive In storage and computing time. A normal
assumption in resolution i1s that the original axioms do mot
contain a contradiction; if one exists, it is generated by
the negation of the theorem to be proved. Thus, generating
resolvents between the original axioms does not directly
advance the search for a contradiction. The assumption of
consistency of the original axioms leads to the second
strategy.

In set-of-support resolution, the base generation
contains the original axioms, and generation 1 contains
only the negated hypothesis. Resolution then proceeds in a
breadth-first manner, but since generation | has only one
clause, relatively few <clauses are produced in generation
2. This approach produces more generations, but fewer
clauses in each, and is usually more efficient due to the
special significance of the negated hypothesis.
Set-of-support resolution 18 also guaranteed to find a
contradiction {f one ex{ists.

A subset of breadth-first resolution is linear-input
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resolution. In this strategy, the next generation s

produced by resolving the current generation only against

the base generation. Thus one of the parents of each
resolvent is static and fixed. Linear-input is an

attractive and commonly used strategy, but is not complete.
Its appeal for optical 1implementations 1is that the base
generation could be captured in transmission masks, and
only the generated resolvents need be stored in images.
Further, since each generation of resolvents i{s replaced by
a new generation, there 18 little or no storage growth,
Although it {is an incomplete strategy, linear-input
resolr tion may be wuseful iin problems with many facts
(single literal <clauses) and few implications (multiple
literal clauses) since it 1s the resolution of single
literal clauses which wultimately leads to final
contradiction (null clauses).

An interesting strategy related to linear-input
resolution is ancestry-filtered resolution. In this
strategy, which 1is complete, one of the pair of clauses to
be resolved must be an ancestor of the other clause. This
offers a considerable reduction in the number of resolvents
to be considered, but requires parentage information about
clauses. In conventional systems, this {s done with linked
l1sts, but this 1s not optically feasible. We have not
examined this strategy in detail, but it is possible that
some amount of clause replication in redundant data spaces

may substitute for list structure, and make this approach
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feasible. It is clear that the control and data management
problems of this strategy are the worst of the four

strategies discussed.

7. Electro-optic hybrids

At the present time, it is difficult to see how a
completely optical resolution system could be built. The
primary areas of difficulty are optical gain in a systemn
with a large number of bits, and in optically accomodating
the growth of the state space. These problems could be
gracefully solved, along with some of the control problems
mentioned earlier, by the use of electro-optical
conversion. It appears that a single type of device would
suffice - an optically addressable memory. Such a device
would consist of a 2-D array of cells, each containing a

photodetector, one bit of electronic memory, and a 1light

\ emittting diode (LED). Upon electronic command, the device
would load the array of bits from an image, or generate
such a image via the LED's. The memory could also be read
or written electronically. Such a device could be used for
gain, for data {input and output, and for control, with

suitable electronic interfaces. Portions of such devices

"

'

{ already exist in CCD arrays and solid-state cameras. The
introduction of LED's into such devices would be a 1logical

’

’ step in the evolution of GaAs technology.

4

5 The use of an optically addressable memory in
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resolution would eliminate much of the need for SLM's,
since the compaction of resolvents mentioned earlier <could
be achieved electronically by rewriting the memory.
Inclusion of shift register circuitry in the memory would ]
even allow the compaction to be dome in parallel.

With data stored electronically, expansion of data
storage need not be accomodated in the optical portion of
the system. Instead, bulk electronic memory could be
substituted. Further, introduction of the initial
resolution clauses into the system could use the same ,

mechanism.

8. Summary

Our purpose in this paper has been to review the
essentials of symbolic computing, demonstrate 1list-free
notation for at least one problem of interest, and show the
feasibility of optical techniques for a significant portion
of this problem.

The problem of mathematical resolution was discussed X
from the standpoint of basic operators, control complexity
and data management complexity. The Dbaslic operations
required are clearly feasible with optical technology,
while control and data management require either advances
in technology or wuse of &electronic hybrids. Our future
work will involve quantifying the magnitude of these issues

for actual problems and attempting to match specific
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optical and electro-optical technologies to their solution.
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Figure 1 - Lists as Boolean Arrays
Figure 2 - Differential Boolean Logic
Figure 3 - Clauses in Differential Form
! Figure 4 - Control and Data Complexity of Algorithms
Flgure 5 - Inference Rules in Clause Form
Figure 6 - Time Serial Resolution
Figure 7 - Spatially Parallel Resolution
Figure 8 - Time Serial Literal Formation
Figure 9 - Time Serial Resolvent Compaction

Figure 10 - Parallel Resolvent Compaction
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dibit interpretation

00 not present
o1 - false (negated)
10 true (asserted)
11 contradiction
(both asserted
and negated)

Figure 2 - Ditferential Boclean Logic
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: A+B +D 10 01 00 10
| B+D 00 10 00 10
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L Figure 3 - Clauses in Differential Form
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inference clause form
A'B=Pp D A+B +D
B'=—p D B+D
A= D A'+D
A+B=p D A'+C
B'+C
A= CD A"+ C
A'+D

Figure 5 - Inference Rules in Clause Form
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OPTICAL IMPLEMENTATIONS
OF }

MATHEMATICAL RESOLUTION ’

Rodney A. Schmidt
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Mathematical resolution is an algorithmic technique for reasoning from

> e~

facts expressed in clause form to a conclusion. The technique is normally
implemented on electronic computers with list-processing languages. This
paper presents data representation and processing techniques for a parallel
implementation using array-based optical logic. Implementations up through
the quantified propositional calculus are presented, and the operations of resol-
vent formation, unification and scarch are discussed. It is shown that a largely

parallel formulation of resolution is possible, and optical technologies are sug-

gested to implement this formulation.
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INTRODUCTION

Optical computing is an attractive technology for a variety of problems
due to its speed and parallelism. It has been successfully applied to signal pro-
cessing, equation solving, and digital logic, as well as to other fields [1-4]. The
application of optical computing to artificial intelligence (A. I.) has been lim-
ited, due to the qualitatively different nature of A. 1. problems. Areas in which
optical computing has been successful are ones in which the control of algo-
rithms is not data-dependent. A. l. is at the opposite end of the computational
spectrum. In A. I., the flow of control through an algorithm is dominated by
the data, especially in conventional A. I. languages such as LISP. This creates
problems for optical implementations, because optically controlled switching of
optical data typically requires opto-electronic data conversion and uses rcla-
tively slow spatial light modulators. A practical optical implementation must

minimize these interactions.

We focus here on a particular subset of A. I., namely expert systems, and
on a particular (albeit general) method within the subset. The method is
mathematical resolution, a method for deductive reasoning about facts and
hypotheses. Mathematical resolution is an algorithmic technique for mechaniz-
ing the deductive reasoning process so that it can be mechanically carried out
by a computer. The technique is extremely computer-intensive, and also gen-
erates large amounts of intermediate data during the derivation of a proof.
Many aspects of the process are inherently parallel, and this fact makes optical
implementations attractive. An unattractive feature is the requircment to

manage the data space whose size changes in a data-dependent fashion. The
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challenge is to design a data representation and a set of operations which

implement mathematical resolution with as little interaction as possible
between control and data, and then implement the design using optical com-

ponents.

MATHEMATICAL RESOLUTION

Mathematical resolution uses boolean logic to generate new statements
through deductive reasoning from an initial statements set. Normally, a
hypothesis is provided by showing that its negation contradicts the original
fact set. In resolution, a statement or rule of inference is represented in a spe-
cial form called a clause. A clause is a disjunction of terms, each called a
literal. Since in ordinary logic, rules are represented by logical implication, a
preprocessing step is required to transform ordinary statements and rules into a
form suitable for resolution. This process need only be performed once for a
given problem area and is not covered here. Several excellent references exist
[5-7]). As an example of a transformed rule, the implication (P - G} transforms

by the rules of Boolcan algebra into the clause ( P* + G).

The next process in mathematical resolution is resolvent formation. In
this process, new statements are derived from scts of old statements. For
example, the set of clauses {( P + G) ; G’} resolve to gencrate the new
statement { P’} . The ncw statements are added to the rule base and resolvent
generation continues until the null clause is generated or no nmew clauses are
possible. If the null clause is generated, the original hypothesis was true, since

its negation produced a contradiction.
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In practical applications of resolution, hundreds or thousands of resolvents
must be generated before a problem is solved. The order in which the resol-
vents are generated may have a dramatic effect on how many resolvents are
required and how long the process takes. At the same time, some orderings
require extremely sophisticated algorithms for control, while others are rela-
tively straightforward. A tradeoff must be made between efficiency and com-
plexity, especially for optical implementations where complex control is very

difficult.

The technique of mathematical resolution can be applied to several
different levels of mathematical logic. Each higher level adds complexity to the
process but allows the representation of more interesting reasoning problems.
Optical implementation of the lowest level seems straightforward, but restricts
the problem domain to rather trivial problems. Implementation of the highest
level poses severe design problems which at present do not appear to have easy
solutions. Our expectation is that at an intermediate level interesting problem
domains can be handled without taking present optical methodologies beyond

their breaking points.

The lowest level of mathematical logic considered is the propositional cal-
culus. In the propositional calculus, the literals in clauses are Boolean con-
stants, in either asserted or negated form. The clausc example given earlicr
was drawn from the propositional calculus. Mathematical resolution in the
propositional calculus is straightforward. Two clauses resolve if and only if
exactly one literal occurs in asserted form in one of the clauses and in negated
form in the other clause. Thus {( P’ + @) ; P} resolve to {Q} . If more than

one literal meets the test, them the clauses do not resolve. Thus



{( P+ Q) ;: (P+ Q')} donot resolve. This latter case makes sense. since the
two clauses represent (P - @) and (@ =~ P) , from which no new facts can be
deduced. If zero literals meet the test, then likewise no resolveut exists. Thus
{( P + Q) : P’} do not resolve, since no literal occurs in one clause asserted

and in the other negated. This corresponds to the logical situation that

(P - Q)and ( P’')do not permit further deduction.

The next level of mathematical logic is called the quantified propoasitional
calculus. In the quantified propositional calculus, the literais in a clause are
Boolean valued functions, called predicates. Fach predicate has zero or more
arguments which may be constants or variables. This formulation allows the
specifications of general rules which relate different predicates of variables.
The variables themselves are not Boolean valued, nor are the constants. The
domain of the predicate functions may be any discrete or continuous number
space. A sample clause in the quantified propositional calculus might be
( P(r) + Q(z)). In this clause, P and @ are predicates, and the variable x is
the argument for cach predicate. Resolvent formation in the quantified propo-
sitional calculus involves an additional step. A set of clauses can be resolved if
exactly on literal is asserted in one clause and negated in another after the pro-

cess called unification is performed.

Unification involves the trial substitution of constants for variables, or
variables for vartables in an attempt to make two clauses more similar. If a
substitution can be found which makes two clauses meet the basic resolution
requircment, then a resolvent can be formed. For a given pair of clauses,

several such substitutions may exist, each yielding a different resolvent. A

sample unification and resolution might be {{ P'(z) + Q(z)) ; Q'(A)}, where
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4 is a constant. This pair resolves to /(1) . The umfying substitution 1«
. 1~ 4 . vielding the clause pair {{ #/11)+ QU 1)) . Q' (4)} . These meet the
)
\ ) -
N normal resolution condition, and generate the resolvent shown above
lesolution in the quantified propositional caleulus is substantially more
\ . . . . .
B complex than in the propositional calculus. Not only do varous unifying <ab-
R
'y . . ; .
" stitutions have to be explored, but predicates can occur more than once in a
h
clause, each time with different arguments. Further. while the order of predi-
v
- cates in a clause is not significant. the order of arguments to predicate func-
“
» tions very definitely is significant. All of these issues lead to more complex
representations and operations.
~l
- The most general form of mathematical logic used in resolution is the first
~
o order predicate calculus. This notation allows not only constants, predicates
and variables, but also arbitrary functions as arguments of predicates. These
- functions allow real-world relationships between variables to be modeled. The
» potential complexity of handling these functions optically is enormous, and the
o
effort reported here does not address the first order predicate calculus. The
&
: major conscquence of ignoring the first order predicate calculus is to either
v
: limit the size of problems which can be handled, or to drastically increase the
number of clauses required to represent the problem in the quantified proposi-
”
$4 .
P tional calculus.
L
o
o~ . . L
A In any of the logic schemas described above, the proof process is interac-
v tive. In most cases, the resolvents directly derivable from the original facts and
‘ .
P rules (the base set), do not themselves solve the problem. The resolution pro-
[, @
' cess must be repeated using the new resolvents to produce yet another genera-
N tion of resolvents. This iteration of resolvent generations may be repeated
~
~
‘l
~
[~
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dozens of times before the original hypothesis 1« proved There are. however,
several alternatives in how the next generation of resolvents 1« produced

Several of these appear to have potential for opticai implementation.

In breadth-first resolution. generation 0 (the base set) contains all the on-
ginal facts and rules, including the negation of the hypothesis to be proved.
Generation 1 contwins all the clauses directly deducible from generation 0.
Generation k is produced by resolving generation k-1 against the union of gen-
erations 0, 1 . .. k-1. This strategy will exhaustively produce all possibie resol-
vents, and will prove the hypothesis if it is true. The quantity of resolvents

gencrated 13 large and may exceed any reasonable implementation limits,

In linear-tnput-form resolution, generations 0 and 1 are as 1n breadth-first
resolution, but generation k 13 produced by resolving generation k-1 only
agatnst generation 0. This has two benefits. [irst, the number of resolvents
per generation is smaller; and second, one of the components of each resolution
1s fixed. Optically, this would permit generation 0 to be encoded in a quasi-
static mask such as a liquid crystal mask, rather than requiring an active opti-
cal source. Unfortunately, linear-input-form resolution is not guaranteed to

find the answer, even if it exists.

In set-of-support resolution, generation 0 contains the original facts and
rules, erclusive of the negated hypotheses. Generation k is produced by resolv-
ing generation k-1 against the union of generations 0, 1 . .. k-1. This strategy
will prove the hypothesis if it is true, but will produce fewer resolvents per gen-
eration. More generations may be required than in breadth-first resolution, but

the size of the gencrations is more manageable.
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A last possible form of resolution is ancestry-filtered resolution. In this
form. generation O is the original set of facts and rules, and generation 1 is
chosen in any of the ways previously described. However, each resolvent in
generation 1 is associated with a table of 2 clauses which are its ancestors.
More generally, in generation k, each resolvent is associated with a table of 2*
clauses which are all its ancestors. Generation k is formed by resolving each
clause in generation k-1 with either the base set (generation 0) as in linear
input form, or with its own ancestors from its associated table. This strategy is
guaranteed to yield a solution if one exists, but requires more complex control
than other strategies. Also, the length of the ancestor table for each resolvent

doubles each generation.

OPTICAL DATA REPRESENTATIONS

In the propositional calculus, clauses may be conveniently represented by
bit arrays, since each possible constant literal may occur at most once in each
clause. We may denote each possible constant by a bit pair, with 00 = not
occurring, 01 = asserted, and 10 = negated. The fourth possibility. 11, can be
used during resolution to detect contradiction. Figure 1 shows the representa-
tion of a sample pair of clauses in the propositional calculus. The length of the
bit vector representing a clause is twice the number of total constants required
in the problem. In an optical timplcmentation, the dimension of the bit vector
may be either time or space. Presenting all components of the vector simul-
tancously has the advantage that less optical memory is required during the
resolution process, and that the time domain is preserved for holding the grow-

ing number of resolvents produced in each new generation. Presenting the

e e P N NN N N N L



e aiat ata et ntatatalalnt b Na’ tat e fad Mgt at bat ot vat tat ke’ daata’ be int ‘B e ate ava- ha ataatl ata adh 2t wid gY e af o8 St}

components of the vector serially in time requires less transverse connection in

the optical hardware.

The optical implementation could take several forms. To illustrate one
technique for performing operations in the propositional calculus, consider Fig.
2. This figure shows the dibit representation of the resolution of A + B’ and B
+ C. The possible dibits are shown in Fig. 2(a) where the two squares 1ssoci-
ated with each possibility can be thought of as being light or dark. The two
clauses in Fig. 2(b) are superimposed in such a way as to cause the light pat-
terns to overlap as in Fig. 2(c). The contradiction is removed to produce the
final answer in Fig. 2(d). The dibits of Fig. 2(a) could be represented by laser
diodes or light emitting diodes in an input as shown in Fig. 3. The resolution
of Fig. 2(b) could be performed as in Fig. 3 where one dibit is rotated before
being spread with cylindrical Jenses. The superposition achieved with the
transmission mask and prisms of Fig. 3 is represented (transposed) in Fig. 1(c).
Holographic elements also could be used. To remove the contradiction, either
an optical-to-electrical conversion is required or, ultimately, optical logic ele-
ments could be used. One two-dimensional means of removing conflicts would
be a liquid crystal array. The cells of the liquid crystal would be transmissive
unless both dibits of a literal are illuminated. In that case, an AND operation
would cause those cells to switch. The doubly illuminated dibit and hence the

contradiction would be removed.

Resolution of the type described using Figs. 2 and 3 can be done in paral-
lel. A bit vector representing a clause can be resolved with several clauses in
parallel by use of the technique illustrated in Fig. 4. All of the optical com-

poncnts are not shown. The light patterns representing a series of clauses,
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introduced temporally. are spread to overlap the patterns of several clauses at

once. Fach column in the result matrix is a separate resolvent. A «patial Light
modulator, such as the liquid crystal array, can then remove all contradictions
in parallel. An alternate approach that allows several clauses to be recolved
with respect to several others i« shown in Fig. 5. In this case. the hierals are
not introduced in parallel, as is the case in Fig. 4, but an array of sources are
modulated to introduce them serially in time. The first Literals in all the
clauses shown horizontally are resolved with respect to all of the first literals of
the clauses shown vertically. The next clock eycle, all of the second literals are

presented, ete.,

Representation in the quantified propositional calculus is considerably
more complicated. Here, cach clause is composed of literals, each of which iv an
ordered )ist rontaining a predicate name followed by arguments. The argu-
ments may be either constants or variables. The representation must allow the
optical substitution of any constant for a variable, or one variable for another
in any of the argument positions, and it must be possible to make the same
substitution in all literals within the clause. The representation must allow for
an indefinite number of literals in cach clause because, in the quantified propo-
sitional calculus, a predicate may appear more than once in a clause, each time
with different arguments. A feasible representation here is to encode each
literal as a rectangular bit array, with one dimension representing the sequence
of names in the ordered list, and the other dimension used for an encoding of
the actual predicate or argument name. Figure 6 is an example of a literal
represented in this way. Each row in this notation specifies an element of the

ordered list of names which represents a literal. Row 1 encodes the predicate
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name itself, and whether the predicate is asserted or negated. This row could
use the same dibit notations used in the propositional calculus. Row 2
represents the first argument. Each column in Rows 2 < n represents a particu-
lar constant or variable name. Thus in each row, exactly one column will be
eliminated to indicate the name of the corresponding argument of the predi-
cate. Row k is used to encode the name of the k-1 th argument. Substitution
of a constant for a variable or a variable for a variable can easily be performed
by deflecting the column associated with the variable to be eliminated into the
column of the constant or variable to be substituted for it. This is not as easy

with more densely encoded representations.

A clause is represented by adjoining a set of literals in either space or
time. The spatial representation has the problem of encountering implementa-
tion bounds if the number of literals in a clause gets large, but one can argue
that it is unlikely that clauses with a large number of literals will participate in
the successful solution of a problem in which the objective is to reduce the
number of literals to zero! A time serial representation makes it easier to han-
dle Iarge numbers of literals, but also makes the performance of parallel opera-

tions more difficult.

In view of the complexity introduced by moving from the propositional
calculus to the quantified propositional calculus, it is not surprising that mov-
ing to the first order predicate calculus introduces another quantum leap in
complexity. By allowing the arguments of predicates to be functions, which
themselves have arguments (which may also be functions), the matrix notation

proposed above is completely confounded. Conventional expert systems use a

graph-structured notation for such complex clauses. and there is no obvious
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way to translate this notation into a parallel form which can be optically mani-
pulated. This problem must be left until the state of the art in integrated

optics and optical control has taken another giant step.

OPERATIONS

The process of resolution can be regarded as a set of nested loops, in the
computer science sense. The outermost loop i1s the process of producing succes-
sive generations of resolvents using whatever resolution strategy is selected.
The next innermost loop is the process of producing the resolvents themselves
through the interaction of earlier resolvents. This process may be serial or
parallel, or both, depending on how the implementation represents resolvents,
and whether growth in the data set is handled in time or in space. In the
quantified propositional calculus, there is an additional innermost loop running
through the possible combinations of literals within two clauses which might be
capable of unification with proper substitutions. Within these loops are con-
tained the actual operations of resolvent formation, substitution and union of
clauses. We indicate below how these operations may be performed optically.
At the present state of technology, some or all of the interactive control
required for a complete system would have to be supplied with electro-optic
interfaces, but the operations themselves are amenable to optical implementa-

tion.

The fundamental operation in the propositional calculus is resolvent for-
mation. Using the dibit representation introduced earlier, a trial resolvent of
two clauses can be formed merely by optical superposition, as shown in Figure

3. A matrix of trial resolvents can be formed bty spreading a clause in one
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dimension with a cylindrical lens and superposing it upon a matrix of clauses.
Each row in the result matrix is a potential resolvent. The validity of a partic-
ular trial resolvent can be ascertained by counting the number of dibits having
a value of 11 in the result. These dibits correspond to a literal which was
asserted in one clause and negated in the other. The fundamental role of resol-
vent formation states that a valid resolvent exists if and only if precisely one of

these occurs in a trial resolvent.

It is not necessary to actually count the number of contradictions in a trial
resolvent. We may introduce a pair of boolean control variables C and X, such
that C is true if at least one contradiction has been detected in a set of literals,
and X is true if more than one contradiction has been detected. These vari-
ables can be determined in log,(k) logic levels for k possible literals using the
algebraic formulation of Eqgs. (1) through (4). In this formulation, j is the logic
level, and the outcome for a valid resolvent is C[final,0] =1 and

X[final,0}=0.

C[1, ¢] = {1if dibit = 11 else O} (1)
X[, ¢ =0 (2)
Clj,¢] = C[n~1,2i] or Cln—-1,2¢ + 1] (3)

X[j,{]=(C[n—-1,2i] and C[n—-1,2i+1)) (1)

or X[n—1,2¢] or X[n—1,2i+1]
Optically, this can be implemented with logic operating in one dimension
upon adjacent elements representing a trial resolvent. To manage the data set

effectively, the outcome should be used to drive an optical compaction system,

perhaps using light values and acousto optic deflectors or a holographic array,

to ‘squceze out’ invalid resolvents and maintain the physical adjacency of valid
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resolvents. This can be accomplished using log.(n) levels of deflectors, where n

is the number of trial resolvents gencrated in parallel. This is shown in Fig. 7.

In this example, the resolvents in positions 1, 4, and 6 are invalid. The
system of deflection removes these and presents resolvents 2, 3, 5, 7, and 8 in a

physically adjacent pattern at the output.

Once we move to the quantified propositional calculus, the operations
become much more difficult. To resolve two clauses, not conly the original
clauses must bce examined, but the permissible unifying substitutions must also
be performed. These substitutions can be considered by the following imple-

mentation.

For two clauses, each containing N literals (predicate functions), there are
N? possible ways to resolve them, each using a different pair of literals. This
suggests that each clause be replicated along a row or column, and that each of
the clements in the matrix produced by superimposing these rows and columns
is a potential literal to be eliminated by resolution. This replication and super-
position of clauses could be done with a holographic array simulating lenses
and prisms. The internal structure of each element is as shown in Fig. 6, while
the overall matrix of elements is arranged as shown in Fig. & Each element in
Fig. 8 represents a comparison of a literal in one clause and a literal ia another.
For example, the upper left hand element of Fig. 8 represents the unifier of
P(z, A) and Q(:z, B) . Obviously this unification fails. However, the center
element, representing the unification of P'(z, y) and P(z, 2), succeeds with the
substitution of y for : (or : for y). The comparison is valid if the predicate
name is the same for both literals, but asserted in one and negated in the other,

and the arguments are compatible. Arguments are compatible if they are
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either the same, or can be made the same be substituting constants for vari-
ables or variables for variables. At each matrix element in Fig. &, different sub-
stitutions might be required to resolve the two clauses, but if each literal is a
predicate of K arguments, at most K substitutions need be made. This can be
implemented by passing the elements, in parallel, through K optical substitu-
tion planes, each of which considers a different argument to the predicate func-
tion. The following operations must be performed in each plane, at each ele-

ment:

If both arguments are constants, propagate the union of their values. (5)

Propagate the constant for all occurences of the variable

if one argument s a variable.

If both arguments are variables, propagate one of them. (7)

The optical output from each plane is the input to the next plane. In the
final output, a successful resolution will be indicated by an element with vari-
able arguments (outputs in the variables portion of the pattern of Fig. 6) or a
single non-conflicting constant in each argument position, and identical but
complementary predicate names, similar to the situation in the propositional

calculus.

The algorithm described above detects the possibility of valid resolvents,
but does not actually generate them. To produce the actual resolvents, the
resulting matrix must be scanned for valid elements, and for each onc found,
the corresponding resolvent generated. If we optically shift the clauses as the
result matrix is scanned, we can generate shifted versions of the clauses such
that the literal to be resolved out is the first literal in one clause and the last

literal in the other clause. This is shown in Fig. 9. The valid resolvent can
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then be formed by juxtaposing the two clauses after performing the same sub-
stitutions on the entire clause pair that were performed on the literals using
operations 5 through 7 above. Thus, the clauses shown in Fig. 9(b) were gen-
erated by circularly right shifting the original clauses of Fig. 9(a) one position
right. The clauses in Fig. 9(c) were formed from the clauses in Fig. 9(b) by uni-
formly substituting A for x and w for y. The resulting clauses are then resolved
by eliminating the complementary literals to form the resolvent of Fig. 9(d).
Since several elements of Fig. 8 may allow resolution, this process may have to
be perforined several times to gencrate all the valid resolvents of two clauses in

the quantified propositional calculus.

The shifting is easily implemented using fixed optical elements. Once the
literals to be removed in the removal of contradictions have been shifted to one

end, an imaging system can combine the two clauses. Appropriately placed

X stops will remove the contradictions.

. As in the propositional calculus, resolution in the quantified propositional
. calculus requires the consideration of all possibilities allowed by the resolution
g strategy selected. In the quantified propositional calculus, the consideration of

a single possibility is complex enough that the outer loops of the process will
probably be implemented electronically. Furthermore, the nature of the
processes is such that some inputs to the system change much more rapidly
than others. This suggests the possibility of using Fredkin gates [8, 9] for much
of the optical logic, because one of their characteristics is an asymmetry in time
response between inputs. By using the slow input for less frequently modified
data, the performance of the system could be preserved while taking advantage

of the simplicity of the technology.
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SUMMARY

We have described the process of mathematical resoiution for the proposi-
tional calculus, quantified propositional calculus, and first order predicate cal-
culus. For the first two of these, optical data representations have been pro-
posed. A feasible optical impiementation of resolution has been presented for
the propositional calculus, and its extension into the quantified propositional
calculus has been discussed. The implementation in the quantified proposi-
tional calculus is sufficiently complex that significant electronic and electro-
optical assistance will be required. Nonctheless, the impiementation is
significantly more parallel than present methods of performing resolution, and

offers promise for higher performance in expert systems.
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FIGURE CAPTIONS

Sample clauses in the propositional calculus. The possible literals

are A, B, C,D.

Dibit representation and resolution of two clauses. {a) dibit
representation, (b) the two clauses A + B’ and B + C, (¢) trial

resolvent, (d) completed resolution.

An optical method for resolution using dibits.

Spatially parallel resolution of one clause and a set of clauses.
Time serial resolution of literals associated with two sets of clauses.

Structure of the literal (A, y, (") in the quantified propositional

calculus.
Resolvent compaction illustrated.
Replication of clauses.

Sequence of operations in clause unification. (a) original clauses,
(b) clauses after shifting, (¢) clauses after substitution, (d) unified

and resolved clauses.
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MATRIX-VECTOR MULTIPLICATION
USING POLARIZATION ROTATORS

L. Scharf, W. T. Cathey, K. M. Johnson

Center for Optoelectronic Computing Systems
Electrical and Computer Engineering Department
University of Colorado, Boulder

Boulder, CO 80309-0425
Abstract

A new approach to optical matrix-vector multiplication is described which matches sig-
nal processing algorithms and architectures to optical primitives which directly perform rota-
tion operations.
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MATRIX-VECTOR MULTIPLICATION
USING POLARIZATION ROTATORS

L. Scharf, W. T. Cathey, K. M. Johnson

Center for Optoelectronic Computing Systems
Electrical and Computer Engineering Department
University of Colorado, Boulder
Boulder, CO 80309-0425

Introduction

The potential application of optical systems to perform high speed, low cost signal pro-
cessing with large parallelism has attracted the attention of researchers for many years. Gen-
eral optical processors have been developed that compute matrix-vector multiplications and
other linear algebraic operations using incoherent light. One examplc is the Optical Matrix-
Vector Multiplier (OMVM), which calculates the discrete operation of a matrix-vector pro-
duct, rather than the continuous correlation and convolution more commonly associated with
optical processing {1]. The OMVM can be used to compute discrete Fourier transforms
(DFT’s), and for performing linear algebraic operations, including matrix-matrix multiplica-
tions. It has been suggested as a method for implementing associative memory [3-5] and opti-
cal crossbars [4]. The first OMVM had several disadvantages, including low accuracy, low
speed, and a nonprogrammable matrix mask. Recent implementations use real-time spatial
light modulators (SLM) [5-7] and acousto-optic cells [8]. The two-dimensional spatial light
modulators used in many of these optical processors operate at millisecond speeds, are expen-
sive and have low resolution [5, 7]. One-dimensional modulators such as acousto-optic cells
are faster, but the major drawback of computing matrix-matrix operating using one-
dimensional devices is that to calculate two-dimensional matrix-matrix operations, data from
the rows and columns of matrices must be loaded serially. The cycle time through the proces-
sors increases with the order of the matrix, and the natural parallelism of optics is lost.

Objective

The goal of our research is to achieve 100 x 100 matrix-matrix multiplications in a
microsecond, with 10 bit or greater accuracy. To achieve this goal, a new approach is needed.
We describe a two-dimensional optical systolic processor with new algorithms, architectures,
and devices which we believe will result in the evolution of an optical processor capable of
meeting this goal. In this paper we outline our design principles for high-speed, high precision
optical implementations of linear algebraic computations.

One can view the matrix-matrix multiplications problem with the frame work of an 1/0O
problem and a realization problem.

(i) I/O problem : multiply matrices A and B.

For this 1/O problem there are an infinite number of realizations
or algorithms that one can use to perform the multiplications.




We can use this freedom to optimize criteria associated with the

computation. For example, in some digital processing problems we

choose an algorithm to minimize the number of computations. In this

particular application we wish to design algorithms which use low )
accuracy primitives to obtain a high accuracy result. We also wish to

pipeline computations, develop highly regular and locally connected

geometrices, and to use simple optical primitives as the basis of the

algorithms.

(i1)) Realization problem.

The realization problem consists of finding architectures that consist

of simple optical primitives, connected in modular geometries, to

produce high-accuracy results by pipelining the computations through low
accuracy cells. This goal involves:

(a) low accuracy primitives for high accuracy results )
{b) modular geometrices ¢
(¢) pipeline computations 4
(d) simple, optical primitives ‘

Algorithms and Architectures

The algorithms being used for this processor break-up matrices into repetitive operations
on a smaller set of orthogonal rotation matrices. The algorithms are low loss and the archi-
tectures used to implement the algorithms are cellular, as shown in Fig. 1, and based on opti-

cal operations [9]. PYn
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» Figure 1. Cellular Implementation of a Vector Pipelined Projection Operator.




We can use this freedom to optimize criteria associated with the
computation. For example, in some digital processing problems we
choose an algorithm to minimize the number of computations. In this
particular application we wish to design algorithms which use low
accuracy primitives to obtain a high accuracy result. We also wish to
pipeline computations, develop highly regular and locally connected
geometrices, and to use simple optical primitives as the basis of the
algorithms.

(11} Realization problem.

The realization problem consists of finding architectures that consist

of simple optical primitives, connected in modular reometries, to

produce high-accuracy results by pipelining the computations through low
accuracy cells. This goal involves:

(a) low accuracy primitives for high accuracy results
(b} modular geometrices

(c) pipeline computations

(d) simple, optical primitives

Algorithma and Architectures

The algorithms being used for this processor break-up matrices into repetitive operations
on a smaller set of orthogonal rotation matrices. The algorithms are low loss and the archi-
tecturcs used to implement the algorithms are cellular, as shown in Fig. 1, and based on opti-
cal operations {9].

Figure 1. Cellular Implementation of a Vector Pipelined Projection Operator.
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Optical Implementations

Figure 2 illustrates the rotation operation on incoming signals as a (2 x 2) matrix map.
This same operation can be implemented optically using device - that rotate the polarization
of the input vector. One optical implementation of the rotator-combiner is shown in Fig. 3,
where the first element is a polarizing beamsplitter which separates the x und v components.
The second polarizing beamsplitter acts as a combiner of the appropriate components, and a
polarization rotator then imparts the desired rotation onto the resulting vector. For hard-
wired applications, quartz, which gives a rotation fo 21.7° /mm. could be used. The thickness
can be controlled to >ield the desired rotation. Electrically controlled rotators would give
programmability and an array of hiquid crystals could provide discrete rotations.

Uy
_ !
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v

Figure 2. Signal Rotation Operation.

Figure 4 shows that, with the developmeut of a rotator-combiner cell, the general prob-
lem of implementing matrix-vector and matrix-matrix multipliers in npumerically stable
machines can be implemented in a regular cellular array of such rotator-combiner cells.
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Figure 3. Cellular Architecture for Implementing a Sequence of Rotations.

We will discuss implementing the rotator-combiner cell using polarizing beamsplitters,
and ferroclectric liquid crystal (FL.C's) which can switch the polarization of incident light in
less than a microsecond [10, 11]. These crystals, developed at the University of Colorado,
Boulder, in the Physics Department have already been fabricated successfully in 32 x 32
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matrix arrays [12]. By making 256 x 2568 matrix arrays, a trade-off between array size and

accu

racy can be achieved. ln addition, since these FLC's are capable of submicrosecond

switching speeds, a trade-offl between speed and accuracy cau now be made for the first time.

PBS PBS E

Figure 1. Integrated Rotator-Combiner Using Polarizing Beamsphtters.
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Introduction

Optical computing systems offer an increased information processing rate by facihtating
parallel computing architectures. Previous experience with electrome computers indicates
that desired accuracy can be achieved only with digital computanion Swnce the ssmplest digr-
tal arithmetic s binary, most recent work on optical computing 1+ focused on the construction
of binary optical logic gates. Many practical ymplementations of such logic gates have been
sugeested, a recent review is given by Sawchuck aod Strand {1] Most previous schemes
operate on hght intenwity, much in the way that electrome systems operate on voltage or
current. Another natural optical scheme represents the two binary states with two orthogonal
polarizations of Light. The optical element necessary to implement this seheme 15w device
with two states, one of which passes light of a chosen polarization unchanged and the other A
of which converts hight of the chosen polarization to s orthogonat complement  Tsvethov et
al. {1] have desernibed a practical implemeantation of this logie using the now common twisted
nematic (TN) hguid ervatal device, which hastwo voltuge-setected states, one of which rotates .
the polarization direction of appropriately orrented hinearly polarized Tight by 40° aud the )
other of which has no rotary power  Another splementation would use any of the vanable
retardation eflects such as the Pockels effect One state of the device wauld be chosen to have \
zero retardation, and the other to have hall-wave retardation T addition to eithier passing
unchanged or imparting 90° rotation to hoearly polarized hight, this scheme could alvo work ‘
by either pasying unchanged or reversing the handedness of eircularly palanized hght  An
advautage pomnted out by Lohmann [3] that any wmplementation of polarization-based logie
Lias over logics based on antensity 18 that no hght s lostan “he logiea) operation of yuversion K
In intensity-based logies, it s difficult torovert an already dark input, «ince light has to be .
“recreated”; polanization-based elements, as deseribed above, can convert the Light represent-
ing either logical state to the other, making easy the realization of any desired Boolean fune-
tion.

We describe below a third implementation, in which the optical element is a ferroelectric
liquid crystal device that functions as a half-wave plate whose axis can be clectrically toggled
between two orientations that make a 45° angle to each other. These eletments have
extremely useful operating characteristies for optical parallel procesang, including fast
response time {submicrosecond), low-power low-voltage switehing {tens of Volts), and bista-
bihty [1]. FLC elements have already been used 1o an intensity-based lovic seheme. where
their high contrast (up to 1500) has been eploited to advantage 5] The polarization-Lased
gate can perform all 16 Boolean logic functions possible with two binary wtnputs, without the
need to manually remove or change any of the optical elements In particular. we show espe-
cially simple implementations of the XOR and XNOR logical operations
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FLC Electrooptics

Ferroelectric hquid crystals possess properties especially attractive for optical logic
applications when used in the so-called surface-stabilized geometry, which has been described
extensively elsewhere (8, 7. 8. Briefly, the FLC is disposed between two closely spaced glass
plates, coated on their inner surfaces with a transparent clectrical conductor. The FLO
material atsell s optically umaxial (we ignore a weak biaxtality), with the uniaxis coupled to
the ferroclectric polarization P so that when P s Lwrprndicul:xr to the glassy plates, the
uniaxis s parallel to them. Two such orientations of P are easily selected by voltages applied
arross the transparent clectrodes; P prefers to be parallel to the resulting electric field £
The optic axis states selected by applied voltages of opposite sign, while both parallel to the
plates, dilfer 1n orientation by an angle 24, where the "tlt angle ™ ;13 a material property
determined by the thermodynamic characteristics of the FLC. Many FLC materials have v,
close to 22° over large temperature ranges, allowing the optic axis to be electrically rotated
through approximately 5% If the thickness d of the FLC layer is chosen so that An = £\/2.
where Anoas the FLO's birefringence and A ia the vacuum wavelength of the incident Light, the
FLC becomes a half-wave ~late. 1f the polarization of normally incident light is chosen either
parallel or perpendicular to one of the voltage-selected optic axis states, it will be transmitted
through the FLC unaffected. The optic axis state selected by the opposite applied voltaze 1
then 15° to either incident polarization, so that both the ordinary and extraordinary modes
will be excited. For correct FLC elements thickness d at total phase shift of @ will accnmu-
late between these two modes, and the incident light's polarization will be rotated by 90°.

Beside the previously mentioned switching speed, the surface-stabilized FLC geometry
offers another feature useful in optical logic systems: bistability. After cither applied voltage
brings the optic axis to one of its preferred orientations, that voltage may be removed without
the optic axis returning to its previous state. This allows a two-dimensional array of F1.0 ele-
ments to be matrix addressed. For instance, if the conductors are divided on oue plate into
column electrodes and on the other plate into row clectrodes, appropriate waveforms applied
to the rows and columns would allow a selected element where a given pair of row and column
electrodes overlap to be changed without disturbing auy of the other elements in the array A
practical scheme for accomplishing this has been demonstrated by Wahl et al. [9], who
achieved 1000:1 multiplexing. Thus, a large number of FLC clements (1000 x 1000 = 10%) can
be simply fabricated on a single substrate, and driven with an economical number of electrical
rannections.,

Ferroelectric Liquid Crystal Logic Gate

The XOR (AB" + A'B) and XNOR (AD + A'IY’) Boolean functions are the most diflicult
toamplement optically ueing bright and dark logic. This is because light s irretrievably lost
when creating not A (A') and not B (B'). Logic gates using bright and true logic, therefore,
require four separate inputs; A, B, A', and 3.

With polarization logic, these functions are rasily implemented using two FLC arrays, an
optical controller, and an analyzer as shown in Fig. 1. In this gate light is not absorbed, and
does not require regeneration.

For the XOR operation, the controller is in a non-awitched state, and vertical light
tHuminates FLC array A. This array is a programmable matrix made up on transparent pivel
clements which either rotate or do not rotate incident light (switched or not switehied pivels)
When vertically polarized laser light illuminates the switched pixels, the Light i« rotated to
the horizontal polarized state. When the incident Taser light illuminates non-switched pivels
no rotation occurs and vertical light 1s tranvmitted. A pattern made up of horizontal and
vertical polarized light lluminates FLC array B If either vertical or horizontal Light
iluminates a switched pixel in FLC B, the polarization iv rotated by 90° vertical rotates to
horizontal and horizontal rotates to vertical. If hight s incident on a non-«witched pinel, the
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transmitted light retains its polarization. The truth table in Fig. 2 summarizes the logical
function. An analyzer at the output provides visual inspection of the XOR function.

To realize the XNOR, the FLC optical controller is switched which rotates the incident
vertical laser light to horizontal light. The truth table for the XNOR function is also shown
in Fig. 2.

Conclusions

\We describe a new optical parallel logic gate implemented with spatial light modulators
made of arrays of ferroelectric liquid crystals (FLC) electrooptic elements. The unique optical
propertics of the FLC elements make particularly simple a logic where two orthogonal polari-
zations of transmitted light represent the two binary states. A feature of this logic 19 that
hieht need never be absorbed, allowing all 16 Boolean functions of two binary inputs to be
implemented in a single gate; additionally, cascaded gates are equally feasible. FLC's also
confer the advantages of submicrosecond switching speed and intrinsic two-state memory.

We will also discuss progress in synthesizing new FLC materials with fuster switching
speed, improved contrast ratio and temperature stability. Scattering and insertion [osses, and
switching energy measurements will be presented. A comparison of the FLC spatial Light
modulator with the deformable mirror device, the silicon PZLT, and the magueto-optic spa-
tial light modulators will be made.

FLC Matrix Amays
HeNe Laser
10 mw L1 .

}—o:@ | ! Output
{

A B Opucal
Controller

Figure 1. FLLC XOR aaod XNOR Optical Logic Gate.
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Photoaddressing of High Speed
Liquid Crystal Spatial Light Modulators

Garret Moddel, Kristina M. Johnson, Mark A. Handschy

Center for Optoelectronic Computing Systems
Campus Box 425
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Boulder, Colorado 80309-0425

Abstract

Switching speeds of photoaddressed liquid crystal spatial hght modulators are currently himited to
several milliseconds. This 1s due 1tn part to the choice of hiquid ervstal {nematic). and 1n part to the choiwce
of photoaddressing schemes. In this paper we describe two methods for making photoaddressed hquid cry-
stal spatial hight modulators with microsecond response times.

Introduction

Optical computing systems offer increased information processing throughput rates by taking advan-
tage of paraliel optical architectures. The fundamental component 1n these architectures 1s a device which
can modulate two-dimensional optical data. These devices are known as spatial heht modulators and have
many applications including input/output displays, spatial and matched filtering, incoherent - coherent
light converters, optical crossbars, and optical associative memories.

Spatial Light modulators (SLMs) are programmed using either electronic or optical addressing schemes
Optical addressing of spatial light n odulators 1s advantageous because 1t 15 a direct addressing technique -
a camera. frame grabber, and com »uter are not required to write a data pattern onto the SLLM. Existing
photoaddressed liquid crystal SLMs are limited to millicecond response times [1-5]. In this paper we
present two methods for fabricating SLMs with microsecond respunse times by photoaddressing ferroelec-
tric liquid crystals with hvdrogenated amorphous stlicon.

Description of the FLC Spatial Light Modulator

Ferroelectric liquid crystals possess properties especially attractive for optical processing apphcations
when used in the so-called surface stabilized geometry [6-9]. As shown n Figure 1, a slab of
essentially optically uniaxial FLC is disposed between two closely spaced glass plates, coated on their
inner surfaces with a transparent electrical conductor. Voltages of opposite signal applied to the plates
select between two optic axis orientations, both parallel to the plates. but differing in direction by an angle
20. The “ tilt angle” 8, a materials property of the FLC, is close to 22.5° over large temperature ranges,
allowing the optic axis to be electrically rotated through approximately 45° If the thichness d of the FLC

layer is chosen so that And = > where An 1s the FLC's birefringence (typically 0.1 - 02) and X 1s the

vacuum wavelength of the incident light, the FLC becomes a half-wave plate.

If the polarization of normally incident light 1s chosen either parallel or perpendicular to one of the
voltage-selected optic axis states, it will be transmitted through the FLC unaffected The optic axis state
selected by the opposite applied voltage is then 15° to the incudent polarization, so that both the ordinary
and extraordinary modes will be excited. For correct FLC element thickness d, a total phase shift of « will
accumulate between these two modes, and the ipeident ight's polanization will be rotated by 90° Figure 2
schematically illustrates this action of the FLC electro-optic element.

The switching speed of the FLC element for a given applied electric field strength E, s largely deter-
mined by thie FLC material's ferroelectric polanization P, and viscasity w, through the relation

= oE (1)
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4 Optical 10 - 907 times are usually about 1.8 7 110}, The viscosity of these~materinls can be determined
L) ~ R v .
o from the above relation when P’ is known. For the lhigh temperature material HOBACPC this relation
. . ~
* gives 1 = 3 cP at the lowest temperature in its smectie ¢ phase {11}, Fgr a typieal room temperature
] material, CS-1004 one can anfer m = 50 ¢P from the manulacturer’s data [1P, Modest improvements over
currentiv available polarizations should vield Ps ol 1 aC/ems With this polaTization, apphied »leetrie fields
A of 100 V/pm would give switching times of about 5 ns at elevated temperature and 100 ns at room tem-
.f,' perature. However, the speed of an FLC arrav is more hkely to he limited by its maximum allowable power
Y dissipation than by the switching time of its FLC material. Switchyng a unit area of FLC by reversing an
s apphed voltage Vo odissipates an energy 2 PV throuch the reversal of the polarization  If this reversal is
Pl g I g) I
repeated as frequently as rossible (ie. once every 1.37), the power dissipated 15 2 PV/(1 811 = nd/1? where
d s the FLC thickness (E = V/d). Thus, for a given maxiunum allowable power dis<ipation W the shortest
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::. Figure 1. Ferroelectric liquid crystal structure.
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achievable characteristic time 15 given by 1 = Iqd/W|¥2  For operation at room temperature of an FLC
device of d = 1 pm with a dissipation of W = 100 mW/cm=, this relation gives a minmunum switching time
of 13ps; at an elevated temperature with W = 1 W/cm= the minimum switching tine s reduced to 530 n,

Because the previously mentioned switching speed, the surface-stabilized FLOC geometey offers another
feature useful in optical logic systems: bistability. After erther apyplied voltage brings the optic avis to one
of its preferred ortentations. that voltage may be removed without the optic axis returning Lo 1ts previous
state. Armitage ¢t al. have demonstrated optical addressing i FLCS 113 Bistabality makes this address-
ing scheme attractive since the write light need only be apphied long enough o swateh the FLCO, after that
the written imacge can be retained by the surface-stabilized FLC '~ mitninsic memeary

Photoaddressing spatial light modulators

Photosensors for SLMs have been fabricated from various matenials, as summarized in Table 1. Since
the switching speeds of most of these devices 1s limited by the modulitor to moderate values fmilhisecond-y,
the response-time demands placed upon the photosensors have been madest. The Hughes hguid ery<tal
heht valve, for example, uses a CdX photosensor {1, 2] In this device a nematic hiquid erystal is switetied
with a 30 msec cvele time. Other successful photoaddressed SLMs use crvstalline sihicon to switeh nematie
liquid erystals [3] and electro-optic crystals {3]. The response times are also on the order of milhsceonds,
althouch in the electro-optic ervstal a evele time of 05 milliscconds v predicted. Achley and Davis have
fabricated liquid erystal SLMs o which the photosensor s hvdrogenated amarphous stheon 410 Under
lowantensity illumination. these devices exhibit a evele time of 100 msee With the advent of the FLU 1t
becomes possible to fabricate SLMs which extubint evele timesin the microsecond regime This places sub-
stantially more severe demands upon the photosensor.

Table I

Comparison of Photosensors for
Spatial Light Modulators (SLMs)

Switching Switching
SLA Photesencor | Contrast Bann Voltaee Speed Recolytion
Film AgBr 10,000 -- - > 1500 1p/mm
Hughes!:? Cds 130 15 volt + 30 msec 30 1Ip/mm
LCLY oplical power
Huehes3 Si 100 15 volts + 17 insec 15-100 Ip/mm
LCLY optical power
Nematic! a-Si H 100 12 voits 70 micec > 35ip/mm
Flectro-— !)ptlcs Si 5077 MTF 10 Y volts 15-2 meec 10 Ip/mm
Crystals
FLC13 B=O 5 107 volts 50 msec 3 lp/mm
* SEEDY GaAs/ 2 15 volts - 10 p-ec 100 1p/inm
(6 x 6 arrays) GaAlAs optical bias and
switching power
t FLC a-Si 100- 1001 15 volts 1-10 peec 100 1p/mm
(123 x 129 arrays)
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Hydrogenated amorphous silicon {a-Si:l{) may have the potential to fulfilf the demanding requirements
of FLC-based SLMs. Several aspects of a-Sizll make it parucularly compatible with high performance
SLAs, .

(1) High photo-to-dark conductivity ratio. Under illumination of 1mW/em= this ratio is typically over
three orders of magnitude [14]. The dark resistance across a filin which 1= several microns thick is over
10°Q/em*,

Large area coverage. As the material has been developed for use in fiat panel solar cells, uniform layers
of a sq. ft. mav be deposited.

—_—
1o
—

{3) Excellent spatial resolution. The diffusion length of holes is below I micron [15]. The requirement of
space charge neutrality prohibits the photogenerated electron from migrating far from the photogen-
erated holes which, in turn, remain within 1 micron of the point of illumination because of their poor
diffusion length. This localization of carriers corresponds to a spatial resolution of better than 100
Ip/mm.

(4) Appropriate wavelength response. The optical absorption i1n a-Si:H rises sharply for wavelengths
shorter than 700 nm, roughly corresponding to its band gap.

(3) Thin film. Because it is deposited as a thin film, transmission-mode as well as reflection-mode SLMs
may be developed [16].

(6) Low temperature deposition. The deposition temperature is typreally 250°C. Therefore low cost, tem-
perature sensitive substrates, such as Sn0, coated glass, may be utihized.

Configurations

Two basic circuit configurations for the photoaddressed SLAl are shown in Figure 3a and 3b. In Figure
3a the FLC is depicted as a capacitor in parallel with a resistor, and the photosensor as a photodiode. In
this configuration voltage is normally applied to reverse bias the photodiode. In the dark the photodiode
passes very little current so the apphied voltage 1s dropped across it. When the photodiode is illuminated it
produces a current which charges the FLC and switches it to the ON state. The FLC mav be switched
OFF by reversing the polarity of the applied bias. The photodiode 1s then under forward bias and conducts
so that the applied voltage is dropped across the FLC.

In Figure 3b the FLC is again depicted as a capacitor in parallel with a resistor, but here the photosen-
sor 1s a photoconductor. In the dark the photoconductor is iighly resistive <o that the left side of the FLC
is charged to V4 through the resistor R When the photoconductor is illuminated its resistance is reduced,
pulling the FLC to V-. When the FLC becomes sutliciently charged its state 1s switched ON. The FLC is
switched OFF by terminating the illumination of the photoconductor, allowing the resistor R to once again
pull the F'LC to V+.

. : _ -J-q
a-Si:H photodiode a-SitH 1 31
L}
photoconductor  t-(--
V-
Figure 3a. Photodiode configuration. Figure 3b. Photoconductor configuration.
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The photodiode permits the FLC to be switched OFF by applving a forward bias pulse and hence does .
not require a third element (such as a resistor) to have access to the FLC pixel. Therefore the entire FLC-
photodiode array may be continuous, non-patterned lavers. With the photoronductar the FLC may not be 4
switched OFF simply by reversing the bias because, if the phetoconducror i< in the dark, the applied
voltage will drop across it rather than the FLC. Therefore a discrete resistor must provide a voltage divider
to cach pixel, as shown in Figure 3b. This requires a photolithography step in the fabrication of the device
to provide a resistor for each pixel. Alternative schemes include (i) forming a distributed resistor 1n a
lateral device [16), (it) switching OFF individual pixels on the entire array by illuminating the photocon-
ductor while reversing the bias, and (iii) providing two photoconductor elemerts {or each pixel, one pulling
the FLC to V+ to switch it ON and one pulling the FLC to V- to switeh it OFF. .

Figures 4a and 4b show edge-on views of the photodiode and photoconductor reflection-mode devices.
An a-5i:H p-i-n layer is deposited on SnOscoated glass to form the photodiode. A retlector separates the
read beam from the write beam. If it is an insulating layer, the photosenscr is capacitively coupled to the -
FLC. The FLC is sandwiched between the reflector and indium tin oxide (ITO) coated glass. The plioto- )
conductor is formed by providing an a-Si:H i-layer with two n-layers for ohmic contact. In Figure 4b a pat- A
terned device is shown in which a discreet resistor is connected to each pixel

Write Beam .
Glass .
SnO, )
S ———— —— ———— 2 |
r: ______________________________________ a-Si:H :
= ————— - Reflector
FLC ’
iTO .
Glass :
)
Read Beam

Figure 4a. Photodiode reflection-taode SLM,
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Write Beam

Glass
SnoO

2

memmemrmaaocaand T T Insulator g

Resistor

~Retlecuve Metal FLC
ITO
Glass

Read Beam

Figure 4b. Photoconductor reflection-mode SLM.

Response Time

For each configuration there are three factors which may limit the response of the device: the
required to charge the FLC, the intrinsic response time of the photosensor and the intrinsic switching
of the FLC. Since the switching time is inversely proportional to the polarization P, from Equation
desired FLC switching time determines P and hence the required charge. For example, the charge req
to reverse the state of the FLC in 1 psec with 10 volts applied is 4 x 107% C/em=. For switching 1
creater than 100 wsec the polarization charge becomes much less than the charge required by the geom
..t i:itancee of the FLC and the photosensor. This capacitance is approximately 7nF/cm?. The value ¢
 or.otresistor is very large, so that the leakage current is negligible.

i ane required to charge the FLC depends upon the illumination intensity and the characterist
o ~ir. For the reverse-biased photodiode, each absorbed photon produces one electron to ¢l
T., senerate the charge to switch the FLC in 10 msec requires an illumination intensi
1t W/em=. A 30 msee cycle time, as would be required in a display application, v
- oot illumination. The response time of the reverse biased a-Si:l photodicde itself
rt Under a reverse bias of several volts this time is under I psec [17], and ther

e tine of the devices.

» each absorbed photon produces an electron which may traverse the ¢
1., ;iu.t.conductive gain results in much more charge per photon than in th
o onontensity of 3mW/em? should provide ample charge to switch the

s would require an intensity less than | wW/em?, The response ti

wever is substantial. It can vary from microseconds to hundre

. toonoeonditions of the a-Si:H [18]. Unless the photoconduc

the lumting factor in the response of a photoaddressed Sl
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Conclusions

The combination of a ferroelectric liquid crystal and an a-Si:H photosensor provides the potential for a
high speed photoaddressed spatial light modulator. The ferroclectric liquid crystal is capable of
microsecond switching when it is provided with sufficient charge. An a-3Si:H photodiode can provide this
charge and response time, but it requires high tllumination intensities. An a-Si:H photoconductor can pro-
vide the charge under lower tllumination intensities, but the photoconductor response time may be a limi-
tation.
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The gate design reported here is an outgrowth of a study of the use of optical computing for artificial
intelligence.!2 The particular area chosen for study was mathematical resolution,3:4 a method of
reasoning using boolean algebra. In common with other non-arithmetic uses of optical computing, the
operations involved in the process of mathematical resolution require the cascading of multiple levels of
logic. For example, the basic operation in resolution, resolvent formation, requires on the order of log,n

fevels of logic to validate the resolvent of two clauses each containing n terms. Since in a real system, n
might easily be 1024, and each level of logic might require two levels of optical gates, on the order of 20
gates might have to be cascaded in order {0 generate an outpult.

If logic levels are encoded as light polarization, it is possible to perform these operations without
dissipative losses at each logic level. We are modeling the use of ferroelectric liquid crystals (FLC)>7 to do
these operations. The gate makes use of the polarization rotation property of FLC devices to perform the
boolean "and" or “or" functions for data represented using differing light polarizations. The architecture is
suited for large systems of boolean variables in which data must be processed in parallel. Efficient use is
made of optical components in that only the liquid crystal devices and photodetectors require an internal
array structure. The remaining devices are image preserving, and only one opticat element is required at
each step, regardless of the size of the data array being processed. The array structure of the
photodetectors and FLC elements requires only local coupling, with each FLC connected to an
immediately adjacent detector. This would facilitate the layout of entire matrices of gates. The parallel
nature of the process, combined with the high speed of terroelectric devices, allows the system to operate
at rates comparable to electronic processors. The optical gate presented is the kernel of a larger system
which includes data storage and control. Because of the general applicability of the gate design, it will be
presented separately here. The larger system will be presented at a later date.

The fundamental properties of a cascadable gate are well known. The inputs and outputs of the gate
must be spatially equivalent (same area, same collimation), optically equivalent (same frequency, same
coherence, same polarization) and either the gate must regenerate amplitude, or fosses must be smail
enough that a reasonable number of gates can be cascaded betore losses become unacceptable. The
present design satisfies all these criteria.

Input to the gate is in the form of linearly polarized light. For a two-input gate, the inputs are presented
spatially adjacent, as either horizontally or vertically polarized light. The pair of inputs passes through a
birefringent crystal. The crystal separates the horizontal and vertical components of each input !in the
absence of polarization noise, each input will contain only one polarization). The horizontal components of
both inputs impinge on a single semi-transparent photodetector, which intercepts a small fraction of the




incident light. The resistance change of the photoconductive detector is used 10 change the voltage
applied 1o a single ferroelectric liquid crystal located in the path of both of the venrtically polarized input
components. If no light impinges on the photodetector, the FLC does not rotate ght passing through 1.
p If light hits the photodetector, the FLC performs a 90 degree rotation on light passing through it. Since
’ only vertically polarized light passes through the FLC, if there is no horizontal light on the photodetector,
the gate output is vertically polarized. If either input is honzontally polarized, the FLC will ensure that any
vertical component of the other input will be shifted to horizontal. In addition, almost all of the horizontai
input is passed through the system, since only a smalil pontion is used to drive the photodetector.

The output of the gate occupies four times the spatial area of the input, and potentially is distributed in
difterent ways, depending on the input combinations. The size is reduced to match the original by a
converging-diverging lens pair which effects a 2:1 scale change in both dimensions. In an array of gates,
’ only one lens pair is needed for the entire system, so this does not add excessive complexity. The spatial

distribution of the light within the output pattern is not significant because subsequent gates are uniformly
sensitive over their entire input window.

A diagram of the gate is shown in Figure 1. The input light enter at station A. A birefringent crys:al
separates the light into horizontally and vertically polarized components as shown at station B. An
! FLC-detector pair transmits the horizonta! light, and may or may not rotate the vertical light to horizontal
This is shown at station C. A converging-diverging lens pair at station C shrinks the output pattern to be
the same size as the input. The output at station D is ready for deflection into further gates.

The gate is essentially nonabsorptive, with the only intentional light absorption occuring in the
photodetector. This is deliberately inefficient, with the majority of the input light passing through to the
output. The gate does require electric power to drive the FLC, but the FLC is very high impedance, and - -
the switching energy is very low, on the order of 0.8 picojoules for a typical gate. The electrical circuit of
the gate is shown in Figure 2.

Our mathematical resolution system will use monolithic arrays of optical gates. Each gate array will
consist of a crystal with a matrix of FLLC's and detectors deposited on it, and a single converging-diverging
lens pair for the entire array. Our present experimental results are drawn from a proof-of-concept model
fabricated on an optical bench. This model is shown in Figure 3.

e e SO ey T T T v YT Yy

Our present work involves the detaifed simulation of the physics of the monolithic gate array. This will
then be applied to a simulation of the larger artificial intelligence problem while fabricalion of a sample array
is begun.
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FLC Matrix Arrays
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Figure 1. (a) Electrooptic action of ferroelectric liquid crystal (FLC)
element. The FLC is in the form of a thin slab between transparent
conductive electrode plates (not shown). The liquid crystal's smectic
layers make an angle y, to the horizontal. Also shown is the optic axis
direction (director) n. the ferroelectric polarization 5, and normally
incident light rays with polarizations & vertical and horizontal. In the
state gshown to the left with n vertical. selected by "positive” applied
voltage. the incident light is transmitted with polarization unchanged:. {n
the state shown to the right with n at 2y. = 45° to vertical. selected by
“negative” applied voltage. the polarization of either incident rav is
ro..ted by 90°. (b) Two arravs of FLC elements arranged to make XOR and

XNOR optical logic gates. The controller is a large. sinple element.
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. Figure 2. Truth table for XOR and XNOR functions. For inputs A and B and the
‘3 optical controller. the arrows represent the direction of the FLC optic
N
axis. For the output, the arrows represent the polarization direction.
A (a) XOR. (b) Switching the controller reverses the output polarizations.
: yielding the XNOR function.
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